Comparative QSAR- and Fragments Distribution Analysis of Drugs, Druglikes, Metabolic Substances, and Antimicrobial Compounds

نویسندگان

  • Emre Karakoç
  • Süleyman Cenk Sahinalp
  • Artem Cherkasov
چکیده

A number of binary QSAR models have been developed using methods of artificial neural networks, k-nearest neighbors, linear discriminative analysis, and multiple linear regression and have been compared for their ability to recognize five types of chemical compounds that include conventional drugs, inactive druglikes, antimicrobial substituents, and bacterial and human metabolites. Thus, 20 binary classifiers have been created using a variety of 'inductive' and traditional 2D QSAR descriptors which allowed up to 99% accurate separation of the studied groups of activities. The comparison of the performance by four computational approaches demonstrated that the neural nets result in generally more accurate predictions, followed closely by k-nearest neighbors methods. It has also been demonstrated that complementation of 'inductive' descriptors with conventional QSAR parameters does not generally improve the quality of resulting solutions, conforming high predictive ability of 'inductive' variables. The conducted comparative QSAR analysis based on a novel linear optimization approach has helped to identify the extent of overlapping between the studied groups of compounds, such as cross-recognition of bacterial metabolites and antimicrobial compounds reflecting their immanent resemblance and similar origin. Human metabolites have been characterized as a very distinctive class of substances, separated from all other groups in the descriptors space and exhibiting different QSAR behavior. The analysis of unique structural fragments and substituents revealed inhomogeneous scale-free organization of human metabolites illustrating the fact that certain molecular scaffolds (such as sugars and nucleotides) may be strongly favored by natural evolution. The established scale-free organization of human metabolites has been contemplated as a factor of their unique positioning in the descriptors space and their distinctive QSAR properties. It is anticipated that the study may bring additional insight into QSAR determinants for conventional drugs, inactive chemicals, and metabolic substances and may help in rationalizing design and discovery of novel antimicrobials and human therapeutics with improved, metabolite-like properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative QSAR Analysis of Bacterial-, Fungalplant- and Human Metabolites

Several QSAR models have been developed using a linear optimization approach that enabled distinguishing metabolic substances isolated from human-, bacterial-, plant- and fungal- cells. Seven binary classifiers based on a k-Nearest Neighbors method have been created using a variety of 'inductive' and traditional QSAR descriptors that allowed up to 95% accurate recognition of the studied groups ...

متن کامل

QSAR modeling of antimicrobial activity with some novel 1,2,4 triazole derivatives, comparison with experimental study

Our study performed upon an extended series of 28 compounds of 1,2,4-triazole derivatives that demonstrate substantial in vitro antimicrobial activities by serial plate dilution method, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and multiple linear regression (MLR); a significant collection of molecular descriptors was used e.g., Edge a...

متن کامل

Application of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors

One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...

متن کامل

Pixel selection by successive projections algorithm method in multivariate image analysis for a QSAR study of antimicrobial activity for cephalosporins and design new cephalosporins

Thirty-one Cephalosporin compounds were modeled using the multivariate image analysis and applied to the quantitative structure activity relationship (MIA-QSAR) approach. The acid dissociation constants (pKa) of cephalosporins play a fundamental role in the mechanism of activity of cephalosporins. The antimicrobial activity of cephalosporins was related to their first pKa by different models. B...

متن کامل

A comparative QSAR analysis, molecular docking and PLIF studies of some N-arylphenyl-2,2-dichloroacetamide analogues as anticancer agents

Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal levels, inhibit tumor growth and reduce proliferati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2006